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ABSTRACT 

 Micro-scale self assembly is an attractive method for manufacturing sub-

millimeter sized thermoelectric device parts. Challenges controlling assembly yield rates, 

however, have caused research to find novel ways to implement the process while still 

resulting in a working device. While a typical system uses single n-type and p-type 

material elements in series, one method used to increase the probability of a working 

device involves adding redundant parallel elements in clusters. The drawback to this 

technique is that thermal performance is affected in clusters which have missing 

elements. While one-dimensional modeling sufficiently describes overall performance in 

terms of average junction temperatures and net heat flux, it fails when a detailed thermal 

profile is needed for a non-homogeneous system. For this reason, a three-dimensional 

model was created to describe thermal performance using Ansys v12.1. From the results, 

local and net performance can be described to help in designing an acceptable self-

assembled device. 

  In addition, a haptic thermal display was designed using thermoelectric 

elements with the intention of testing the thermal grill illusion. The display consists of 5 

electrically independent rows of thermoelectric elements which are controlled using pulse 

width modulating direct current motor controllers. 
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Chapter 1 - Introduction 

1.1 Thesis Statement 

This thesis is presented to show the use of finite element analysis (FEA) for the 

thermoelectric performance of micro-scale, self-assembled devices. Previous research has 

demonstrated an optimal performance at scales inaccessible to pick and place 

manufacturing and thin film deposition methods. While self-assembly shows promise, 

100% assembly of components is not expected and thus, the final configuration of a 

device could take on many forms. This paper hopes to capture the subsequent 

performance characteristics due to the non-homogeneities.  

An additional project was undertaken to design a haptic thermal display using 

macro thermoelectric elements which are controlled by a DC motor controller with a 

pulse width modulated (PWM) voltage output. Analysis of the design was done using 

FEA to study the expected thermal gradient the test subject would observe. Various other 

details related to the design are also described as well. 

1.2 Background 

1.2.1 The Thermoelectric Effect 

In 1821, the thermoelectric effect was discovered by German physicist Thomas 

Seebeck. He noticed an electromotive force, causing a small voltage potential, when a 

junction of two dissimilar metals was heated. More importantly, it was realized that the 
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change in potential was a function of the change in temperature [1], and unlike 

pyroelectrics, the voltage produced is maintained as long as a temperature difference 

exists. About a decade later, a French watchmaker, Jean Carlos Peltier discovered that if 

the experiment is run in reverse, a small change in temperature could be produced when a 

current was applied to the junction. He also noticed that when the current direction was 

inverted, the heating and cooling of the dissimilar metals was reversed. It should be noted 

that because purely metallic materials were all that were available at the time, this effect 

was very small, and Joule heating easily disguised the thermoelectric effects. 

Furthermore, William Thomson contributed to the development by realizing the two 

effects found by Seebeck and Peltier were related to one another. By applying 

thermodynamic principles to the two situations, Thomson found that the two dissimilar 

materials were not a requirement to observe thermoelectricity, and that in a third case, a 

homogeneous conductor could be heated and cooled with the application of a current 

source, or develop a voltage potential with the application of a temperature gradient [2]. 

 These discoveries paved the way for inventions like the thermocouple, thermoelectric 

power generator (TEG), and thermoelectric refrigerator/cooler (TEC).   

Thomson’s success in quantifying the effect yielded a set of equations, which will 

be outlined later in the text, which related the three thermoelectric effects. Coefficients 

were defined for Seebeck, Peltier and Thomson. The important thing to realize about the 

three coefficients is that the Seebeck and Peltier refer to a junction between two different 

materials, whereas the Thomson coefficient refers to a single, bulk conductor. 

Considering thermoelectricity is one of multiple thermodynamic effects occurring 

simultaneously when current is passed through a material, a method had to be devised to 
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measure the properties without effects like Joule heating present. The answer was to use a 

superconductor as one of the two materials. Since superconductors possess zero electrical 

resistance, they theoretically also have a Seebeck and Peltier coefficient of zero. Where 

before a differential coefficient had to be defined between two materials, now absolute 

coefficients could be used based on the zero-reference. This is justified by applying the 

third law of thermodynamics, which shows that the differential Seebeck coefficient 

between two conductors must be zero at 0 °K. Furthermore, Borelius et al. [3] 

experimentally determined the absolute Seebeck coefficient of lead from 0 °K up to 18 

°K, then determined the Thomson coefficient from 18 °K to room temperature. By doing 

this, the absolute Seebeck coefficient of lead was found over the entire range of 

temperatures, thus allowing future experiments to use lead as a reference material, and 

negating the need of a superconductor in the experiment.  

In the early 1900’s, metals were still considered to exhibit the best thermoelectric 

properties. It had been shown mathematically that a good thermoelectric material should 

have a high Seebeck coefficient, high electrical conductivity, and low thermal 

conductivity [4]. These characteristics minimize the thermal effects of Joule heating and 

dampen the effects of the parasitic heat path which is opposite the direction of heat 

pumping. In quantitative terms, it was shown that practical refrigeration and power 

generation would be possible with materials, which hadn’t been invented yet, possessing 

optimal properties. 

With the invention of the transistor, in 1949, came a new type of material called 

the semiconductor. It was found that semiconductors could meet the parametric needs far 

better than metals, and a new material, bismuth telluride (Bi2Te3) was developed and 
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found to have advantageous properties near room temperature. Also, because we 

typically operate a thermoelectric device thermally in parallel, and electronically in 

series, there is a necessity to have materials that transport heat in opposite directions with 

respect to current direction. Bi2Te3 is given the ability to be used for the two inversely 

related branches by doping it into extrinsic semiconductors. The electronic result of this 

process will be explained in a later section dedicated to material characteristics. 

During the early research, great optimism was held for solid-state, 

environmentally friendly applications of the effect. Due to the state of materials sciences 

at the time, thermoelectric refrigeration and power generation efficiencies were 

significantly worse than their vapor-compression counterparts. Thermocouples, on the 

other hand, do not require efficient thermal to electric energy transformation. For this 

reason, they have been used and developed for much longer than TEG’s and TEC’s. As 

materials sciences advanced, increased efficiencies translated to using thermoelectric 

devices (TED’s) in commercial and industrial applications requiring small dimensions, 

gravity independence, and a solid state/maintenance free design. 

1.2.2 Self-assembly 

 The term “self-assembly’ can be found referenced in many fields such as 

chemistry, physics, biology, mathematics and multiple disciplines of engineering. The 

definition used to describe the term varies widely between each field and has yet to be 

clearly and concretely stated to encompass all aspects of self-assembly. The definition, as 

described by Pelesko [14] caters well to engineering applications and is actually a 

conglomeration of various other definitions given in the past. It states that 
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“Self-assembly refers to the spontaneous formation of organized structures 

through stochastic process that involves pre-existing components, is reversible 

and can be controlled by proper design of the components, the environment, and 

the driving force.” 

Typical forces harnessed for self-assembly include surface tension, capillary, magnetic, 

electrostatic, Van der Waals bond and gravitational [5]. 

 Possibly driving the differences in the definition between fields, the reasons for 

studying self-assembly are also diverse. A simple reason is to understand the mechanisms 

that drive nature and life itself. Many biological processes are driven by chemical 

reactions that resemble microscopic manufacturing. From this, it is easy to see why the 

concept requires the attention of the chemist, biologist, physicist, engineer and more. By 

studying these basic interactions, the researcher strives to understand the systemic 

approach nature uses to efficiently and accurately build and maintain systems. Pertaining 

to engineering, self-assembly research finds use in building micro- and nanostructures. 

Also, smart materials, such as self healing materials, are being researched which utilize 

self-assembly concepts [6]. 

1.2.3 Thermal Haptics and the Thermal Grill Effect 

The field of haptics is generally regarded as a study of how humans perceive the 

sense of touch. More specifically, this refers to kinesthetic, tactile and thermal feedback 

interaction which allows us to sense force, position, texture and temperature. Without 

haptic feedback, some of the most trivial tasks would be made nearly impossible and 

possibly dangerous to accomplish. 
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Human skin tissue has a variety of different types of sensors integrated within it, 

and with a combination of inputs, the brain is able to make judgments about object 

properties and structure. Temperature is sensed using two different types of nerve 

endings (receptors) which are found in the dermis [15]. Cold receptors are 30 times more 

abundant than their counterpart and also possess a quicker response due a difference in 

fiber material [16]. Furthermore, the sensory processing characteristics of these receptors 

should be understood to increase the effectiveness of the haptic device. 

(1) Range – Each receptor is dedicated to sensing cold or hot temperatures. The 

general range of neutrality for each type is from 30 °C to 36 °C where no 

sensation is realized. This region is also known as the “indifference zone.” [17] 

Again in general, painful sensations tend to dominate below 15 °C and above 48 

°C. Haptic devices should perform within these ranges to provide safe, effective 

display of thermal information. 

(2) Rate of change – It has been realized that the thermal receptors in the skin largely 

detect changes in temperature (more specifically heat flux) versus absolute 

temperature of an environment. This is largely unique from the other modalities 

of sensation, i.e. vision, and within the indifference range, a person is even less 

apt to perceive slow changes in temperature.  

(3) Resolution – This property is very dependent on stimuli location, local skin 

temperature, and more, but the threshold of perception lies somewhere near 0.01 

°C and is considered a relatively poor quality compared to other sensation types 

i.e. sight and hearing. 
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(4) Spatial summation – This refers to thermal receptors being more capable of 

determining intensity and interval of stimulation rather than spatially acute 

sensation. This drives some unique secondary characteristics, namely, the ability 

for a thermal threshold to be maintained while simultaneously decreasing the 

stimulus intensity and increasing the application area. 

From these characteristics, it is determined human thermal receptors seem to act 

analogous to piezo (impulse) devices, versus having a sustained type of output like a 

thermometer. This realization is essential to designing a successful thermal display. 

A related phenomenon known as the thermal grill and thermal illusion effect is 

also a consequence of the thermal receptors. This effect is defined as the perception of 

intense constant heating just under the threshold of pain that results from modulating 

heating and cooling on an area of skin. This effect was first discovered by Thunberg in 

1896 [18]. There are various versions of the thermal illusion [19], and the terms synthetic 

heating and thermal grill illusion are often times used interchangeably. While the 

definitions of the two terms are not concrete, it has been generally accepted that thermal 

grill involves using hot and cold temperatures simultaneously, and synthetic heating uses 

only warm temperatures in a sequential manner. 

Experimentation in haptics related to the thermal modality often employs use of a 

thermal display. A thermal display is defined as a device that is capable of conveying 

information to a human subject by means of applied heat [21]. Novelty in these devices 

comes in the form of the application of temperature or heat flux at the skin-device 

interface. TED’s have been a popular choice in the design of thermal displays. The 
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advantages of using TED’s include range of temperature, temperature control, size, solid 

state design and orientation independence.  

1.3 Literature Review – Theory of the Thermoelectric Effect 

There are three thermoelectric coefficients that have been defined for use with the 

thermoelectric effect. The differential Seebeck coefficient (α), also termed thermoelectric 

power, is defined as 

 𝛼𝐴𝐵 =
𝑉
∆𝑇

 (1) 

where V is voltage potential and ΔT is the temperature difference between each junction. 

The Seebeck effect makes temperature measurement with a thermocouple possible. If two 

dissimilar metals are electrically connected and placed in environments with different 

temperatures, a measurable voltage potential will result, typically 1 to 100 µV/ºC [7][8].  

 

Figure 1 ‒ Simple thermocouple design 

 The second defined coefficient is that of Peltier (π) 

 𝜋𝐴𝐵 =
𝑞
𝐼

 (2) 

where q is the ratio of the rate of heating or cooling at each junction to the electric current 

(I). It is demonstrated that the differential Seebeck coefficient is much easier to measure, 

and can be related to the Peltier coefficient by utilizing a Kelvin relation 

 𝜋𝐴𝐵 = 𝛼𝐴𝐵𝑇 (3) 
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Figure 2 – A closed thermoelectric circuit. If materials A and B are different, a current will flow. 

The final coefficient associated with the thermoelectric effect is the Thomson 

coefficient (τ), and is defined as 

 𝜏 =
𝑑𝑞 𝑑𝑥⁄
𝐼 𝑑𝑇 𝑑𝑥⁄  (4) 

It is important to note again that the Seebeck and Peltier coefficients can only be defined 

as a reference between two materials and are considered “surface properties,” and the 

Thomson coefficient is a bulk property of a single material [9]. Absolute Seebeck and 

Peltier coefficients can only be defined when a superconductor is used for one of the two 

materials. As stated before, it is acceptable to assume superconductors possess a Seebeck 

and Peltier coefficient of zero allowing an absolute value to be assigned to the second 

material. From this assumption it is also acceptable to relate the Thomson coefficient 

directly to an absolute Seebeck coefficient (S) by Equation (5). 

 𝜏 = 𝑇
𝑑𝑆
𝑑𝑇

 (5) 

While these basic equations work well as material properties, a better way to 

describe actual thermoelectric performance has been determined. A dimensionless figure 

of merit relates multiple material properties known to influence the magnitude of the 

effect and is defined as, 

 𝑍𝑇 =
𝑆2𝑇
𝜌𝜆

 (6) 



www.manaraa.com

10 

 

where (λ) is defined as the materials thermal conductivity, and (ρ) is the electrical 

resistivity. Based on the figure of merit, it is traditionally accepted that a material with a 

high Seebeck coefficient, low electrical resistivity, and low thermal conductivity is a 

good thermoelectric performer. Also, these properties are all sensitive to the 

environments they are used in, so a high figure of merit at room temperature may degrade 

quickly as the temperatures stray in either direction. For this reason, specific types of 

thermocouples are to be used in very specific applications. 

 Shown in Figure 3, different types of elements are electrically connected in a 

configuration that cools at one side, and heats at the other. Typically, this pair of elements 

is repeated many times in a device to provide different physical dimensions and 

magnitudes of cooling power. Creating materials whose thermoelectric are inversely 

related to each other is discussed in the materials section of this chapter. In short though, 

semiconductors can be doped with other, property altering, materials to achieve this 

configuration.  

  

 

Figure 3 ‒ Basic thermoelectric circuit 
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 Assuming the material properties are temperature independent, there is no 

electrical contact resistance and heat flow is one-dimensional, the maximum achievable 

temperature difference between the hot and cold junction (TH and TC, respectively) is, 

 ∆𝑇𝑚𝑎𝑥 =
1
2
𝑍𝑇𝐶2 (7) 

Because two different materials, possessing different properties, are now in use, a new 

effective figure of merit is defined to account for the inconsistencies between the two 

elements in Equation (8). 

 𝑍 =
�𝑆𝑝 − 𝑆𝑛�

2

��𝜆𝑛𝜌𝑛 + �𝜆𝑝𝜌𝑝�
2 (8) 

Basic conservation of energy equations have been derived for the hot and cold 

junctions using averaged material properties, 

 𝑄𝐻 = 𝐾Δ𝑇 −
1
2
𝐽2𝑅𝑒 − 𝑆𝐽𝑇𝐻 (9) 

 𝑄𝐶 = 𝑆𝐽𝑇𝐶 −
1
2
𝐽2𝑅𝑒 − 𝐾Δ𝑇 (10) 

Where Q is the heat flux, J represents the current density, Re is the electrical resistance, 

K is the thermal conductance of the thermoelectric element and ΔT is the temperature 

difference between the hot and cold junctions. In Equation (9) & (10), KΔT represents 

the heat conduction term, 1/2J2R represents the effects of Joule heating, and SJTH 

represents the thermoelectric effect. Because the current density term is squared, it is 

realized that the energy balance is very sensitive to changes in electric current. To 

maximize use of the effect, the electric current should be chosen in such a way that Joule 

heating does not dominate the energy equations. The use of this optimization can be seen 
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in Chapter 2 - Figure 9, where the heat flux increases to a maximum value, then starts to 

degrade as Joule heating begins to dominate. 

 The coefficient of performance (φ) of the thermoelectric model is defined as the 

amount of heat removed from the cold junction divided by the electric power input (P).  

 𝑃 = 𝐼𝑉 (11) 

 𝜑 =
𝑄𝐶
𝑃

 (12) 

1.3.1 Materials 

 There are relativity few materials known to date that can be considered 

thermoelectric materials. Extrinsic semiconductor alloys have been shown to exhibit the 

best figures of merit since the mid-1900’s with combinations of bismuth, antinomy, 

tellurium and selenium being popular for low temperature use. Bismuth-telluride (Bi2Te3) 

is the most common combination and was used as the simulation material in this paper. In 

practice, this alloy would be doped, where impurity atoms would be diffused into 

interstitial sites, as well as interlayer sites. This was done with Ag and Cu, for example, 

to form n-type bismuth-telluride [10].  

The use of the n-type and p-type is necessary for the following reasons. Materials 

that exhibit n-type behavior have impurities that donate electrons to the conduction band 

(Figure 4), hence they are called donors. The donors conduct electricity via quasi-free 

electrons. Conversely, p-type impurities act as acceptors of electrons and conduct through 

positively charged holes in the valance band [12]. With this, n-type and p-type materials 

can successfully be alternated in a device to provide heat pumping in the same direction. 
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Figure 4 – Diagram of occupied electron states in a semiconductor with impurities. The conduction 
electrons (a) have been thermally excited from the donor impurity state (b) over the energy gap. 

 

1.4 Thesis Outline 

 In the following chapter, FEA technique, application and results will be presented 

as they relate to the applications of self-assembly and haptics. Chapter 2 reviews the 

background and general technique of modeling coupled thermal-electric systems in the 

traditional Ansys FEA application. It also presents data to verify the accuracy of results 

against an accepted one-dimensional model. Using a model similar to that of the 

verification, Chapter 3 focuses on the performance of a micro-scale self-assembled 

device with assembly yields below 100%. The resulting performance characteristics are 

then discussed. Chapter 4 is a section written to demonstrate the design of a thermal 

haptic display utilizing thermoelectric macro-elements. FEA is used to predict the 

thermal characteristics of the device against skin. Finally, Chapter 5 is dedicated to 

recommendations for future research and final conclusions. 
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Chapter 2 – Three-dimensional FEA Analysis 

 Chapter 2 introduces a three-dimensional model for use in thermoelectric analysis 

at small size scales. Various Ansys mesh element types are explored for this application 

in addition to some newly introduced characteristics relevant to small size-scales and 

typical system designs. A batch program is also described which automates the creation, 

solution, and display of results for the model. From this data, a comparison is made to a 

published one-dimensional model to determine accuracy and applicability to future 

analyses. 

2.1 Three-dimensional Thermoelectric Modeling in Ansys v12.1 

 Ansys v12.1 (Traditional) was used to model a thermoelectric device in three-

dimensions. Because devices are typically powered electrically in series, one-dimensional 

analysis is sufficient to predict basic performance characteristics such as TC, TH and QC. 

When analyzing a self-assembly process, however, multiple same-type elements are often 

designed to be assembled in parallel groups to increase the probability that a closed 

circuit is created during the self assembly process. Adding parallel groups is termed 

adding a redundancy factor (R). Because assembly yield rates are expected to be less than 

100%, each cluster of n- and p-type elements could be composed of a different number of 

elements. For this case, three-dimensional FEA should be used to model the various 

thermal and electrical inconsistencies of the system. Consider a system with a 
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redundancy of 4. If the number of successful assemblies in a particular group is less than 

4, the current density through that group will increase by 33%, 100%, and 300% for a 

group with 3, 2, 1 elements successfully assembled, respectively. With current densities 

varying so much, performance characteristics of the device will also vary accordingly. 

This is the major reason for analyzing devices in more than one or two dimensions. 

 Ansys v12.1 [27] has included three element types to handle thermal-electric 

systems. PLANE223 is a 2D 8-node quadrilateral which can be degenerated to a 6-node 

triangle as well as made to have unit thickness associated. SOLID226 is a 3D 20-node 

hexahedron (brick) element. SOLID226 was chosen to represent thermoelectric material 

in this works model. SOLID227 is a 3D element that has configurations including a 10-

node tetrahedron, 13-node pyramid, and 15-node prism. SOLID227 was applied to the 

copper contact volumes as a 10-node tetrahedron which made the mesh interface between 

thermoelectric element and electrical contact couple nodes better. This is important 

because the thermal and/or electrical information at the unmatched nodes will hit a dead-

end and be lost which introduces inaccuracies into the solution. 

 In the calculation of a solution, the thermal load vector depends on the result of a 

separate electric solution at each node. This causes the solution to be non-linear for 

steady-state and transient systems, and requires at least two iterations to achieve 

convergence. For each unconstrained node, the solution produces a temperature and 

electric potential. Reactions, such as heat flow rates, and electric currents also occur in 

correctly constrained nodes as a result of the solution. From each nodal solution, 

elemental Joule heating, current density and heat flux are determined [27]. 
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The model presented uses the SOLID226 element type for the thermoelectric n- 

and p-type material, and SOLID227 for the electrical contact strips. The SOLID226 brick 

elements are set to be one-sixth the height of the thermoelectric element. Smaller mesh 

sizes were attempted; however the maximum number of nodes supported by Ansys v12.1 

was exceeded. This element size was tested and shown to be sufficient in the following 

section. Furthermore, heat transfer from the side walls of the elements is neglected. This 

side wall assumption could easily be adjusted by adding a conducting medium between 

the side walls as seen in research by Ziolkoski [36], but it is not accounted for in the 

analytical model and is not thought to have a significant impact on the final solution in 

this analysis. The properties assigned to the two thermoelectric materials were averaged 

values of the Seebeck coefficient, thermal conductivity and electrical resistivity and are 

seen in Table 2. In the analysis of a true three dimensional system, these values should 

not be averaged, but as this model was compared with a one-dimensional model which 

does use averaged values, the same properties were used. Similarly sized SOLID227 

tetrahedral elements are used for the contact straps. These are given properties typical of 

a copper conductor. The two properties assigned to this material were thermal 

conductivity and electrical resistivity.  

Specifically, this model is based on a generalized system described in detail in 

Miner [35]. The basic system is described by including entry and exit substrates with 

corresponding thermal conductances (KCE/KHE). Also, source and sink temperatures (TS 

and TA, respectively) are applied to better simulate the true application of a 

thermoelectric device. The original use of this technique was to predict the performance 

of devices as size scales were reduced and contributions from components like contact 
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resistance were magnified. This method also accounts for how heat is delivered and sent 

to and from each junction, which better predicts actual junction temperatures (TH and TC). 

A fill factor (f) is also introduced, which serves to illustrate the effects of a given ratio of 

thermoelectrically active area to the entire cooler area. In this model, the fill factor is 

used to control geometry, but its usefulness can be extended if sidewall conduction 

through a fill medium is to be added to the model. Used at micro and nano-scales, this 

factor can have a significant effect on the degradation of the figure of merit by adding to 

thermal interface resistances.  

Seen in Figure 5, dimension Lf is a function of the fill factor, the total number of 

elements (N) and element length (Le) and can be calculated by, 

 
𝐿𝑓 =

𝑁𝐿𝑒 �
1
�𝑓

− 1�

𝑁 − 1
 

(13) 

 

Figure 5 ‒ Design schematic of 6x6 array with a redundancy of 4. 
 

 Table 1 – Characteristic dimensions for a 6x6 array with a fill factor of 0.9 
Model Dimensions 

Lsub 
 

Le 
 

Lcont 
 

Lf 
(*10-4 m) 

 
(*10-4 m) 

 
(*10-4 m) 

 
(*10-4 m) 

1.7500 
 

2.0000 
 

0.2500 
 

0.1298 
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The substrates used to model entry and exit thermal conductance paths are 

considered to be electrical insulators but are assigned a thermal conductivity. Considering 

the scale of model, the thermal contact resistance was included in the conductivity of the 

substrate. Using Equations (17) and (18), KCE and KHE were determined and used to find 

the corresponding equivalent thermal conductivities (ksub) for use in Ansys.  

 𝑘𝑠𝑢𝑏(𝐶𝐸) = 𝐿𝑠𝑢𝑏𝐾𝐶𝐸 (14) 

 𝑘𝑠𝑢𝑏(𝐻𝐸) = 𝐿𝑠𝑢𝑏𝐾𝐻𝐸 (15) 

 

 

 Figure 6 ‒ 3D Mesh of a 6x6 thermoelectric cooler with a redundancy of 4. 

The boundary conditions for the system include thermal and electrical 

components.  There is a defined beginning and end for the current path. Based on the 

desired direction of heat pumping for the thermoelectric elements, a current vector is 

applied to one end of the simulated device. The magnitude of the current vector is 

calculated from a given current density and is a function of the cross-sectional area of a 
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fully assembled group of elements. The optimal current density for a set of given 

boundary conditions is determined analytically in the one-dimensional model and 

manually input into the Ansys batch code. The thermal boundary conditions applied are a 

source temperature, TS, on the side of the cold junction, and a sink (or ambient) 

temperature, TA, on the side of the hot junction (see Figure 5). These two temperatures 

are applied by coupling the nodes of the entire surface on the respective sides of the 

substrate. 

Table 2 ‒ System properties for Bi2Te3 based analysis 

 

S (*10-6)  λ  ρ (*10-5)  

Element type 

 

Element features (V/K) (W/mK) (Ω-m) 

n-type Bi2Te3 -240  2  1  SOLID226  Thermal-electric 

p-type Bi2Te3 240  2  1  SOLID226  Thermal-electric 

Copper contacts -  400  0.0017  SOLID227  Thermal-electric 

Substrate -  2.21  -  SOLID87  Thermal 

  

A batch program was written for use in Ansys (Appendix A.1) which allows 

quick and automated creation and solving of the thermoelectric system described. The 

code was written to give the user control of various system parameters. One of the main 

goals of this project was to make the code flexible enough for use in the future study of 

self assembled TEC’s. Some of the important easily modifiable parameters include 

material properties (S, λ, ρ), element height, element length/width, substrate thickness, 

current density and boundary temperatures. Also, seen in the following section is a 

methodology used to include thermal contact resistances in the substrate conductivity. 

This scheme was integrated into the calculation of equivalent substrate conductivities. 
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Also, Equation (13) was developed to be used in the code to automatically calculate 

element spacing based on the assigned fill factor. 

2.2 Verification of the Ansys Model against Generalized Thermoelectric System Theory 

 Recent work has produced a more accurate depiction of small scale TEC’s by 

introducing non-ideal conditions of thermal contact resistance, substrate conductance and 

parasitic heat paths [35]. As element length is scaled down to a range of 50 µm to 500 

µm [29]-[32], it is expected the thermoelectric performance will be near its best and is 

where methods of micro-manufacturing techniques are currently being researched [34]. 

In his one-dimensional model, Miner [35] defines a number of updated equations to 

include these effects. An equivalent thermal substrate conductance is defined which 

accounts for element density, contact resistance, and the ratio of thermoelectric element 

conductivity to contact conductivity (g). It is noted that there is limited data to define a 

value for g, and this study uses a value of 0.1 mm based on its use in other work [29]. 

The new entry and exit substrate conductance (KCE and KHE, respectively) can then be 

added to the energy balance as seen in Equations (19) and (20). These equations describe 

the generalized thermoelectric system seen in Figure 7. 

 

 𝐾∗ =
𝑘
𝑔

 (16) 

 𝐾𝐶𝐸 =
𝐾∗𝐾𝐶𝑓

𝐾𝐶𝑔 + 𝐾∗𝑓
 (17) 

 𝐾𝐻𝐸 =
𝐾∗𝐾𝐻𝑓

𝐾𝐻𝑔 + 𝐾∗𝑓
 (18) 
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Figure 7 ‒ Simple generalized thermoelectric system. 

In this system, the two boundaries, TS and TA are constrained to a constant value. The 

entry conductance region lies between the source temperature and cold junction, and the 

exit conductance region lies between the hot junction and the ambient environment.  

 (𝑇𝐴 − 𝑇𝐻)𝐾𝐻𝐸 + 𝐽𝑆𝑇𝐻 + (𝑇𝐶 − 𝑇𝐻)𝐾 +
1
2
𝐽2𝑅 = 0 (19) 

 (𝑇𝐻 − 𝑇𝐶)𝐾 +
1
2
𝐽2𝑅 − 𝐽𝑆𝑇𝐶 + (𝑇𝑆 − 𝑇𝐶)𝐾𝐶𝐸 = 0 (20) 

This one-dimensional general system model was run for a variety of conditions 

and compared to an equivalent three-dimensional Ansys model to compare the calculated 

cold-side temperature, hot-side temperature and cold side heat flux. Using the modeling 

techniques in Chapter 2.1, the three-dimensional model was designed to be equivalent to 

the one-dimensional case. The thermal contact resistance of the one-dimensional model 

was found to have a large impact on the solution. For this reason it was necessary to also 

include the effect in the three-dimensional case. This was successfully accomplished by 

deriving equivalent substrate conductivities by using the following scheme: 
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Figure 8 ‒ Methodology for equating entry substrate conductance to an equivalent conductivity that 
includes thermal contact resistance. 

 

  Figure 9 shows the case where TS and TA are held constant, and the current 

density (J) is varied from 0 A/m2 to 2.5x107 A/m2. It can be seen that while there is near 

perfect agreement with TC and TH, there is a small deviation in the calculated heat flux. 

The maximum error of QC was found to be 7%, or 0.76 W/cm2, at 1.25x107 A/m2.  

 

Figure 9 ‒ Plot of analytical and FEA solutions of thermoelectric performance with constant 
boundaries temperatures TS and TA and varied current input. Ansys results are shown with discrete 

points and the analytical solution is shown as a smooth curve. 
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The model was also tested using fluctuating boundary temperatures. In this test, 

the optimized current for a particular combination of TS and TA was extracted from the 

analytical one-dimensional model and manually input into the Ansys code. For the first 

set of boundary conditions, TS was held at 300 K, while TA varied from 315 to 375 K. In 

the second set of boundary conditions, TA was held at 325 K and TS varied from 250 to 

310 K. Shown in Figure 10, the temperatures compared well and deviations between the 

two models were of the order of 0.2 K for the entire range of boundary conditions. These 

values were accepted and considered to be in agreement. In addition, as QC was 

compared while using the optimized current condition, better correlation was seen 

between the analytical and numerical models. This agreement indicates models run with 

optimized parameters will result in more accurate solutions. The maximum error 

observed in this analysis was 0.47 W/cm2 when TA is equal to 325 K and TS is equal to 

310 K. 
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Figure 10 – Temperature plots for varying boundary temperatures where (a) TS is held constant and 
TA varies from 315 K to 375 K, and (b) TA is held constant and TS varies from 250 K to 310 K. 
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Figure 11 – Comparison of heat flux at the cold-side junction under conditions of varying TA and TS. 

 It was concluded that the three-dimensional Ansys model compared sufficiently 

well with the one-dimensional analytical simulation. With this acknowledgment, three-

dimensional systems of self assembled elements will be analyzed in confidence using the 

same modeling approaches used in the verification. 
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Chapter 3 - Analysis of Three-dimensional Self-assembled Devices 

 Chapter 3 is meant to employ the three-dimensional model described and verified 

in Chapter 2. The application of self-assembled thermoelectric devices is introduced in 

this chapter where the concept of redundant electric paths is described and modeled using 

parallel n-type or p-type elements in clusters. Multiple cases of less than ideal yield 

configurations are presented and simulated in Ansys v12.1. Thermal performance of the 

subsequent system is then analyzed and discussed to determine the impact of having 

vacant element sites within a device. 

3.1 Description of the Three-dimensional Finite Element System 

 In the analysis of a TEC in three dimensions, a section of a fully assembled device 

is modeled to show the local affects of missing or nonfunctional elements. This is done to 

decrease the simulation time and allow for a higher node density in the academic version 

of Ansys v12.1. In these analyses, a 6x6 array of thermoelectric elements with redundant 

same type element clusters of 4 are modeled under various non-homogeneous 

configurations. In Ansys, discrete volumes are defined by assigning values ranging from 

1 to 36. Figure 12 shows the location of each volume, and is referenced to describe which 

elements are thermally and electrically active. Element 9-12 are defined as the center 

cluster, and the group of clusters surrounding this are defined as edge clusters. 
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Like the verification model, a one dimensional Matlab model was used to 

determine the optimal current density for a given system of properties and boundary 

conditions. This system configuration, given in Table 3, was considered the basis for each 

of the Ansys analyses for comparison. 

 

Figure 12 ‒ Assigned thermoelectric volume numbers and locations for a 6x6 array and redundancy 
of 4. Figure orientation is based on the default workplane directions and entrance and exit current 

paths. 
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Table 3 – Key system properties and parameters used in the analysis of a three dimensional 
thermoelectric device 

Element Parameters 

    
Thermal 

 
Seebeck 

    Thickness 
 

Resistivity 
 

Conductivity 
 

Coefficient 
    (m) 

 
(Ω-m) 

 
(W/mK) 

 
(μV/K) 

 
Fill Factor 

 
Redundancy 

2.00E-04 
 

1.00E-05 
 

2.0 
 

240 
 

0.9 
 

4 
 

Substrate Parameters 
 

Contact Parameters 

  
Thermal 

     
Thermal 

Thickness 
 

Conductivity 
 

Thickness 
 

Resistivity 
 

Conductivity 
(m) 

 
(W/mK) 

 
(m) 

 
(Ω-m) 

 
(W/mK) 

1.25E-04 
 

2.2125 
 

2.50E-05 
 

1.70E-08 
 

400 
 

 Boundary Conditions 
Source 

 
Sink/Ambient 

 
Current 

Temperature 
 

Temperature 
 

Density 
(K) 

 
(K) 

 
(A/m2) 

300 
 

325 
 

1.3485E+07 
 

The impact of missing elements was assessed by comparing the heat flux and temperature 

profiles with different number of elements. Figure 13 shows the paths on which the 

temperature profiles are measured. Figure 14 shows the temperature profile through Path 

B and Path C for the fully assembled system. Path A is assumed to be equal to Path B in 

the fully assembled system.  
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Figure 13 ‒ Description of the paths for temperature profile plots 

 

 

Figure 14 – Temperature profiles plotted along (a) Path A and Path B, and (b) Path C at the hot and 
cold sides. 

 

The temperature profiles in Figure 14 describe a system where each cluster is performing 

equally. This is expected considering the current magnitude is the equal throughout the 

model, and geometric symmetry exists in multiple directions. 
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3.2 Self-assembled Configurations of Missing, Centrally Located Elements  

 Three cases of functional systems containing less than ideal assembly yields were 

simulated under the same conditions stated in Section 3.1. The purpose of the analysis 

was to determine how vacant assembly sites would affect the overall performance of a 

TEC as well as look at the local thermal effects on the remaining elements in the cluster. 

The solutions of these cases are used to determine whether or not a particular 

configuration would remain useful and acceptable. While there are many characteristics 

that could be chosen to determine acceptability of a device, it is believed that two good 

indicators of system performance are TC and QC. As current is increased, TC will decrease 

until Joule heating causes a parasitic heat flow in the direction opposite of heat pumping. 

This will also cause a reduction of the net heat flux at the cold-side junction which is 

undesirable. With access to the nodal temperatures at any point in the three-dimensional 

model, new methods are presented to describe system performance and acceptability, 

specifically how the temperature profiles differ within a single model, as well as how the 

edge clusters performances are affected compared to the 100% assembly yield case. 

Below, in Figure 15, the three cases are presented in two-dimensions to show the 

locations of vacant assembly sites. Center elements were chosen to simulate the case 

where elements were missing in the interior of a much larger array. Local thermal effects 

were not expected to spread past the edge clusters. 
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Figure 15 – (a) Control case with full assembly (b) Case 1 with one center element missing, (c) Case 2 
with two center elements missing, (d) Case 3 with three center elements missing. 

3.3 Review of Results from Three-dimensional Ansys Analyses 

 Results of the three previously described cases were obtained and analyzed to 

determine total and local thermoelectric performance. Nodal data extracted from Ansys 

included total heat flux from the cold reservoir (QC), local values of TH, local values of 

TC, and the temperature profiles along the previously defined paths. This data provided a 

detailed representation of thermoelectric performance. 
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Figure 16 – Path A and Path B temperature profiles for (a) the fully assembled control case, (b) one 
central missing element, (c) two central missing elements, and (d) three central missing elements. 

 

 

Figure 17 – Path C temperature profiles along the hot-side junction surface (a) for a fully assembled 
case, (b) with one central element missing, (c) two central elements missing, and (d) three central 

elements missing. 
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Figure 18 ‒ Path C temperature profiles along the cold-side junction surface (a) for a fully assembled 
case, (b) with one central element missing, (c) two central elements missing, and (d) three central 

elements missing. 

 
Table 4 – Results extracted from the Ansys solution for traditional performance analysis. The listed 

junction temperatures are seen in the center cluster. 
FEA Results from Ansys 

Vacant 
 

TC 
 

TH 
 

qC 
 

QC 
sites 

 
(K) 

 
(K) 

 
(W) 

 
(W/cm2) 

0 
 

294.67 
 

360.53 
 

0.1508 
 

10.47222 
1 

 
293.50 

 
363.96 

 
0.15311 

 
10.93643 

2 
 

293.14 
 

370.68 
 

0.14796 
 

10.87941 
3 

 
295.43 

 
417.72 

 
0.1079 

 
8.174242 

 

3.4 Discussion of Results 

Two things can happen as elements become nonfunctional in a cluster and the 

current magnitude increases through the remaining elements: In some cases, the local 

thermal performance will actually increase or remain relatively unchanged from a 
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completely assembled cluster. That is, TC will decrease, TH increases, and QC increases 

which corresponds to an increase thermal of performance. Second, the thermal 

performance can degrade as current magnitude increases and Joule heating dominates 

causing a parasitic heat flow. This causes an increase in TC, TH, and QC and ultimately, a 

decrease in overall performance 

The plot of Path A in Figure 16 represents the internal temperature gradient 

present within the remaining center elements. With the removal of each element, the 

temperature profile of the center elements become less linear as the magnitude of Joule 

heating increases. From a design standpoint, any energy loss due to Joule heating is 

undesirable because it is a non-reversible process and does not improve heat transport, 

but it is an effect that is unavoidable. In the extreme case where only one of four elements 

is successfully assembled, the current is 300% greater than the edge clusters and the 

internal temperature of the element rises drastically to a maximum value of 417.7 K. The 

other cases, shown in plot (b) and (c) of Figure 16, show maximum temperatures at the 

hot junction of 363.9 K and 269.2 K, respectively. Also, the total system heat flux with 

one element missing rose 0.46 W/cm2 and with two elements missing rose 0.40 W/cm2 

compared to the fully assembled case. Although the temperature curves of (b) and (c) 

become less linear, the thermal performance at these two conditions is shown to actually 

increase. This is thought to be the result of a more optimal fill factor condition being 

found as empty space increases in the center cluster. This was further proven by 

removing one element from each cluster, thus making it an R=3 system with a fill factor 

equivalent to 0.675, and solving the system with the same boundary conditions used 

prior. The results shown in Table 5 show that, although the thermal performance 
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increases for systems with R=3 and R=2, the coefficient of performance decreases in 

each case. This means that the input current is not ideal for the conditions, but if the 

efficient use of power is not of concern, this can be overlooked. In future models, 

accounting for optimal fill factor could have a significant impact on increasing device 

performance. 

Table 5 – Performance and efficiency comparison between closely packed elements verses less closely 
packed elements under equal boundary conditions. 

FEA Results from Ansys 

  
TC 

 
TH 

 
qC 

 
QC 

 
I 

 
V 

 
P 

 
φ 

  
 

(K) 
 

(K) 
 

(W) 
 

(W/cm2) 
 

(A) 
 

(V) 
 

(W) 
 

  
R=4 

 
294.7 

 
360.5 

 
0.1508 

 
10.47 

 
2.1576 

 
0.396 

 
0.85 

 
0.177 

R=3 
 

293.3 
 

371.4 
 

0.1815 
 

16.81 
 

2.1576 
 

0.500 
 

1.08 
 

0.168 
R=2 

 
292.5 

 
386.0 

 
0.1762 

 
16.31 

 
2.1576 

 
0.694 

 
1.50 

 
0.118 

R=1 
 

303.4 
 

451.1 
 

-0.083 
 

-7.70 
 

2.1576 
 

1.245 
 

2.69 
 

-0.03 
 

Further analysis was done on Figure 17 and Figure 18. Here, the difference in 

temperature between the center elements and edge elements is clearly seen. The average 

difference for the hot/cold sides was found to be 2.4/1.1 K, 6.9/1.7 K and 10.9/-1.1 K, for 

(b), (c) and (d), respectively. This shows that the hot side junction is much more sensitive 

to changes in current magnitude.  On plot (b) for both figures, a slight variation in 

temperature can be seen across element volume 10. This is thought to be a result of the 

vacant site located next to it not providing the conducting heat energy needed to maintain 

the elevated temperature. Also, for plot (d), an elevated temperature is seen where there 

should be an element missing. This happens because the measurement path lies directly 

in between the element top surface and the copper contact bottom surface. With this 

realization it was concluded that the temperatures plotted are from the bottom side 
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contact surface. The slope of the temperature gradient in this area is due to conducting 

heat from surrounding elements. 

From the given data it was concluded the case with three missing elements does 

not display characteristics of an acceptable TEC. The performance of the cases with one 

and two missing elements, however, only deviated from a fully assembled system 

marginally. For applications where the main control parameter is net heat flux, case (b) 

and (c) would be considered acceptable considering this performance increased. In an 

application where temperature uniformity of the hot or cold junction was the main 

concern, case by case analysis would have to be done to justify acceptability. 
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Chapter 4 – Haptic Thermal Display 

 Chapter 4 presents a project related to the field of haptics focused on the design of 

a thermal display built to test the thermal grill illusion. Design requirements for the 

display are described and lay out a framework for a prototype design. The prototype 

design uses five independently controlled rows of thermoelectric elements and is built to 

be affixed to the forearm of a test subject. Finally, static FEA is done to characterize the 

thermal performance of the device against human skin tissue at multiple time-steps 

during simulated application of the thermal grill illusion. 

4.1 Design Requirements 

 When designing a thermal display, certain key features must be included. Possibly 

the most fundamental and important is control. In order to quantify an experimental 

response, the tester must be able to control the inputs given to the subject during an 

experiment. In this project, it is important to control the skin side temperature of the 

device accurately and quickly. Based on literature [37], the applied temperature 

combinations for use displaying the thermal grill illusion vary from different sources. 

Non-painful display of the effect was observed with various mild temperature 

combinations of cold (31-26 ºC) and warm (35-40 ºC) [38]. Secondly, critical 

temperatures need to be established to prevent injury to the test subject. It has been 

established in previous studies [16] that the average thermal pain thresholds are near 45 
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ºC for warm temperatures, and near 15 ºC for cool temperatures. With this in mind, the 

control device should be capable of performing an emergency cutoff if skin side 

temperatures approach the pain threshold limits. 

 How the temperature gradients are presented to the skin is also of importance. The 

designated area of experimentation will be on the outside (dorsal) or inside (ventral) of 

the forearm, where surface geometry, specifically rate of curvature, can vary widely 

between individuals. For this reason, the device should be made flexible to conform to 

different curved surfaces. Also, a means of comfortably attaching the device to the 

forearm is necessary. The device and components should be held securely to the arm 

while not obscuring the ability to sense changes in temperature with kinesthetic 

interaction. 

4.2 Design and Components Used 

 The thermal feedback display presented in this paper consists of five discretely 

controlled rows of thermoelectric elements. Each independent row is made up of 4 

elements connected electrically in series, and thermally in parallel by using n-type and p-

type Bi2Te3 based material. The distance between each row is 0.4 inches 
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Figure 19 – (a) Schematic of thermoelectric array with discretely controlled element rows, (b) Top 
view of the display, (c) Side-view of the thermal display 

  The thermoelectric elements have dimensions of 3.8 X 3.8 X 4.8 mm, where 4.8 

mm is considered the element height. For each independent row, copper tape was used as 

the electrical contact material between elements. The copper tape has an adhesive 

backing that attaches to the substrate, and is soldered to each element on the copper side 

as seen in Figure 20. The spacing between each element is thought to have an impact on 

how thermal information is perceived. For this reason, each row was kept a distance of 

0.4” apart. This should allow each row to be perceived separately while still exhibiting 

the spatial summation needed to experience the thermal grill illusion. 
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Figure 20 – Design section for a proposed thermal display. 

Flexibility was accomplished by using a thin vinyl film (2.5” x 2.1” x 0.004”) as a 

substrate on the display side. The substrate acts to retain geometric dimensions of each 

row, as well as provide protection from electric shock as currents up to 4 Amperes could 

be used during an experiment. A prototype with two substrates was tested, but was found 

to have much greater rigidity than the single-sided substrate version. As this leaves 

electrical contacts exposed at one side, a layer of insulation was added as individual 

pieces to the adhesive on the copper tape which minimizes risk of short circuit across 

multiple elements and allows flexibility. The display is capable of a wide range of 

curvature sufficient to be used on forearms of all sizes. 

Temperature control of the device at the skin interface was a main priority. Thin 

film resistive temperature detectors (RTDs) were placed at the end of each row for this 

measurement. The sensors used were TFD series flat element detectors from Omega, Inc. 

The sensor uses a platinum resistance detector created specifically for rapid, flat surface 

measurement. Rapid response is achieved by possessing a large surface-area to volume 

ratio along with a high-conductivity ceramic substrate [39]. The RTD works by 

experiencing linear changes in resistance as temperature fluctuates. When a voltage is 

applied to the sensor, the change in voltage potential across each RTD is monitored via 
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an input device and used to safely and effectively operate the thermal display. Figure 21 

shows the overall control logic of the system. Phidgets, Inc, produces a variety of control 

boards commercially available that were used to perform the electrical tasks required. A 

6-port USB hub is used to interface the sensor inputs to the control program. High current 

output was needed for the device (Up to 4.4 A) and is provided by a PWM motor 

controller which can continuously output up to 14 A. This device was also interfaced 

with the control program. 

 

Figure 21 – Control flowchart for a thermal display with five independent thermoelectric rows. 

 To test the thermal grill effect with this device, the PWM controller will bring 

each row up to a maximum temperature in timed succession. Once the maximum 

temperature is reached in a particular row, it is slowly cooled at rate less perceivable than 

the heating. Figure 22 shows the principle graphically. As this process is repeated in a 
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loop, the thermal grill effect should cause the subjects to sense continual summation of 

temperature in close proximity, thus perceiving a sensation of constant heating under the 

pain threshold [18]. 

 

Figure 22 – Transient temperature control of five independent rows of thermoelectric elements. By 
applying the transient temperature to a subject, the thermal grill effect will be tested. 

 
4.3 Simulated Performance 

 Static performance analysis of the device at different time steps was done, not 

only to visualize the control of the device, but also to determine if heat would be leaked 

into adjacent tissue areas where another row was interacting. One of the main 

deficiencies in current thermal display research is in the modeling of a system designed to 

predict the thermal performance at the receptor location. Yamamoto [40] developed a 

model, but only characterizes the cooler surface temperature based on thermal contact 

resistance between a finger tip and the device substrate. The model presented in this 

paper differs in the fact that is able to describe the temperature gradient at a particular 
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depth within the skin. Three tissue layers were modeled as epidermis, dermis and muscle 

tissue. Published values for thermal conductivity were found to be 0.209 W/mK, 0.322 

W/mK, 0.419 W/mK for epidermis, dermis and muscle tissue respectively [41]. The 

Vinyl substrate located between the copper contact and epidermis layer was assigned 

conductivity as 0.311 W/mK based on a commercial used polymer tested in research 

[42]. The top side of the muscle layer was held constrained to mimic an internal body 

temperature (TB) of 310 K and the substrate was held at room temperature at 298 K. 

 ELEMENT226 brick elements were again used to model the thermoelectric 

elements. ELEMENT227 tetrahedral elements were applied to the copper contact 

material again as well. The Seebeck Coefficient for this model was decreased to 170 

μV/K in this model to align better with typical bulk material properties [43]. The 

designated tissue volumes were meshed with SOLID87 tetrahedral elements. Because the 

tissue volumes contained a much larger number of nodes compared to the previous 

analyses, the mesh size had to be reduced to one-third the element width, or 1.2 mm. 

While this is not the most optimal size, it was seen in previous verifications that 

temperature gradients were not affected nearly as much as the heat flux results with mesh 

sizes of this order. This was verified by modeling only one row of the device which, with 

a mesh size equal to one-sixth the element height, was under the maximum node count. 

Figure 23 shows the agreement between temperatures in the direction of heat pumping 

between the coarse mesh size used in the analysis and a fine mesh.  
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Figure 23 – Comparison of temperature profiles in the direction of heat flow for a coarse mesh and 
fine mesh size. 

Since temperature is the important parameter in this analysis, the larger mesh size is used 

with confidence. Referring back to Figure 22, when any row is at its peak value, the rows 

in succession should be at 75%, 50%, 25% and 0% of the max value. By translating this 

to the model, current inputs for each time-step were divided based on this.  

 

Figure 24 – Components and design of the FEA model simulating a haptic device on skin tissue. 
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 Skin receptors are located at a shallow depth within the dermis layer of tissue. 

From the model, the epidermis-dermis interface temperature gradient will show how the 

thermal information is presented to the receptors. Figure 25 is a time step representation 

where the third row is at its maximum temperature. The maximum temperature shown for 

this condition at this interface is about 40 ºC. The model shows hot-junction temperatures 

near what was crudely tested experimentally under the same current input along the third 

row. The physical experiment consisted of placing the prototype device seen in Figure 19 

on a desk at 23 ºC, applying a current via an adjustable current limiting power supply, 

and using a surface temperature probe to measure the topside surface while a finger was 

placed on top to act as a heat exit path at an element site. At a current of 3.0 A, a 

temperature of 42 ºC was measured at the top surface.   Considering exact material 

properties were not known for the macro-elements being used, this was considered 

satisfactory. 

 

 

Figure 25 – (a) Temperature profile at the epidermis-dermis interface when the third thermoelectric 
row is at a maximum value, (b) Plot of the profile at the center of an element in Row 3. 
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 At each time step in Figure 27, it is seen how the most active rows penetrate best 

into the dermis. This is desirable since the temperature receptor is most sensitive to 

changes in heat flux. As the time step transitions, this zone of higher energy is shown 

shifting from one row to the next, which describes the application of the thermal grill 

effect. 

 

Figure 26 – Description of the orientation of discretely controlled thermoelectric rows. 
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Figure 27 – (a) Plot of temperature profile along the interface between the epidermis and dermis. The 
path travels across each of the five thermoelectric rows, (b) Time step nodal contour map of the 

thermal display while testing the thermal grill effect.  

 

4.4 Next Steps in Device Development 

 With the current simulation showing good performance characteristics under the 

given conditions, completion of the functional prototype will be the central focus. As 

progress is ongoing in the development of a functional prototype, various modifications 

are planned to improve the device. A constant temperature of the topside (non-skinside) 

will be maintained by use of a channeled pathway which will have a temperature 

controlled fluid flowing through it. Current development of this system is underway, 

where device flexibility retention is the main issue being worked. The second device 

improvement is in controlling the spatial dimensions of the individual elements. Because 

the first prototype devices have been built by hand, certain sacrifices to achieve initial 

testing were made. While soldering, elements tended to shift out of alignment. By 

creating a fixture to keep each element within the array from shifting linearly or radially, 
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a much better prototype can be built while still working in the convenience of our own 

lab. 
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Chapter 5 – Conclusions and Recommendations for Advancement 

 In this work, a review of the thermoelectric effect, its history and fundamental 

theory has been applied to analyzing modern systems of self-assembly and haptics. The 

effect, typically described using one-dimensional, thermodynamic conservation 

equations, was found to be insufficient in providing detailed information about local 

thermal effects caused by non-homogeneities introduced in a self-assembled system. A 

three-dimensional FEA model was created by writing an Ansys batch program which 

automated most of the steps required to perform an analysis for a 6x6 array of elements 

with a redundancy of 4.  

In the modern one-dimensional models, non-ideal system characteristics are 

introduced by quantifying thermal contact resistance, entry and exit conduction regions 

and fill factor which have been shown to increase model accuracy at small size scales. 

Considering the sub-millimeter part sizes proposed for self-assembly processes, these 

non-traditional characteristics were deemed necessary to be included in the three-

dimensional model. Methods for equating the two models were presented and verified 

through the comparison of simulation results.  The first method varied current density 

over a range including the calculated optimal condition. Very good agreement was seen 

between junction temperature, and a basic correlation was seen between the cold junction 

heat flux values. As the mesh size was decreased during testing, better agreement was 

seen. Further refinement could not be made, unfortunately, due to a maximum node count 
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of 256,000 being reached with element size equal to one-sixth the length of a 

thermoelectric element. A further increase in agreement could be tested by submitting the 

batch code to CIRCE, a university computer more equipped to handle super-fine, high-

node count models. The second model run at optimal conditions showed better 

agreement. An error of 0.47 W/cm2 was seen between the two models, and was fairly 

consistent for each case. Further investigation could be done to find what drives this 

difference of consistent magnitude. 

Analysis of the self-assembled case was done using a model similar to that of the 

verification. An ideal configuration was first simulated to provide a baseline for 

performance comparison. Unexpectedly, local performance within the center cluster 

tended to increase with a reduction of assembled elements as well as total heat flux at the 

cold junction. This occurred for the cases with two and three assembled elements. It was 

found, however, that the coefficient of performance decreased in the cases missing 

elements which describes a less efficient use of input power. For the case of only one 

assembled element, thermal performance degraded severely by displaying the domination 

of Joule heating within the single center element. 

Finally, a project integrating haptics with thermoelectric devices was undertaken 

with the intention of designing, simulating, and building a thermal display with the 

capability to test the thermal grill effect. This was accomplished by assembling a device 

with five independently controlled rows, each containing four thermoelectric macro-scale 

elements. Temperature control was added by attaching thin dimension RTD’s to the skin-

side of an element. A commercially available signal input board will be used to receive 

temperature data and interface to a control program. Also, 5 channels of PWM DC motor 
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control will be interfaced to the control program and used to modulate the input current 

for each thermoelectric row of the display.  

 FEA was done to describe and model various discrete points in time 

within the inherently transient situation. As temperature receptors are, on average, 1 mm 

below the skin surface, the temperature gradient due to an applied surface temperature 

was analyzed to see how effective a thermal display can be at delivering the thermal 

information to a receptor. While static analysis showed good agreement and was 

powerful in describing how the temperature is presented to receptors within the dermis 

layer of tissue, improvement could be made here by performing a transient analysis of the 

various independent rows heating and cooling in the sequence described. 
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Appendix A – Ansys Batch Code 

A.1 Micro-thermoelectric Cooler 

/title, Thermoelectric Cooler 6X6 R=4 
/VUP,1,z 
/VIEW,1,1,1,1 
/TRIAD,OFF 
/NUMBER,1 
/PNUM,MAT,1 
/nopr 
 
/PREP7 
! Element size/number 
N   =36 
S   =sqrt(N) 
le  =2e-4 
h   =2e-4 
ch  =2.5e-5 
sub =5.0e-5 
sink =7.5e-5 
 
!Array Characteristics 
R =4 
f =0.9 
 
!Electric Conditions 
J =1.3485e7         !Current density (A/m^2) 
I =J*R*le*le        !Current to be applied 
 
!Source and Sink Temps 
Ts = 300 
Ta = 325 
 
spc =(S*le/sqrt(f) - S*le) / (S - 1) 
 
!toffst,273 
 
! Material Properties 
K = 2 
! n-type 
mp,rsvx,1,1.0e-5   !Resistivity 
mp,kxx,1,K         !Th.Conductivity 
mp,sbkx,1,-240e-6  !Seebeck 
 
! p-type 
mp,rsvx,2,1.0e-5   !Resistivity 
mp,kxx,2,K         !Th.Conductivity 
mp,sbkx,2,240e-6   !Seebeck 
 
! Contacts 
mp,rsvx,3,1.7e-8   !Resistivity 
mp,kxx,3,400       !Th.Conductivity 
 
! Substrate 
mp,rsvx,4,1e6 
Kch = 1e6            !Conductance (W/m^2K) 
g = 0.0001 
K_star = K/g         !Thermal contact conductance (W/m^2K) 
Kche = (Kch*K_star*f)/(Kch+K_star*F) 
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Appendix A (continued) 
 
khce = Kche*(sub+sink) 
mp,kxx,4,khce        !Th.Conductivity 
 
! Element types 
et,1,226,110 
et,2,227,110 
et,3,solid87 
 
!Block model element 
block,-(5*spc/2+2*le),-(5*spc/2+3*le),,le,,h                   !1N 
block,-(3*spc/2+le),-(3*spc/2+2*le),,le,,h                     !2N 
block,-(5*spc/2+2*le),-(5*spc/2+3*le),spc+le,spc+2*le,,h       !3N 
block,-(3*spc/2+le),-(3*spc/2+2*le),spc+le,spc+2*le,,h         !4N 
 
block,3*spc/2+le,3*spc/2+2*le,,le,,h                           !5N  
block,5*spc/2+2*le,5*spc/2+3*le,,le,,h                         !6N 
block,3*spc/2+le,3*spc/2+2*le,spc+le,spc+2*le,,h               !7N 
block,5*spc/2+2*le,5*spc/2+3*le,spc+le,spc+2*le,,h             !8N 
 
block,-(spc/2),-(spc/2+le),2*spc+2*le,2*spc+3*le,,h            !9N 
block,spc/2,spc/2+le,2*spc+2*le,2*spc+3*le,,h                  !10N 
block,-(spc/2),-(spc/2+le),3*spc+3*le,3*spc+4*le,,h            !11N 
block,spc/2,spc/2+le,3*spc+3*le,3*spc+4*le,,h                  !12N 
 
block,-(5*spc/2+2*le),-(5*spc/2+3*le),4*spc+4*le,4*spc+5*le,,h !13N 
block,-(3*spc/2+le),-(3*spc/2+2*le),4*spc+4*le,4*spc+5*le,,h   !14N 
block,-(5*spc/2+2*le),-(5*spc/2+3*le),5*spc+5*le,5*spc+6*le,,h !15N 
block,-(3*spc/2+le),-(3*spc/2+2*le),5*spc+5*le,5*spc+6*le,,h   !16N 
 
block,3*spc/2+le,3*spc/2+2*le,4*spc+4*le,4*spc+5*le,,h         !17N 
block,5*spc/2+2*le,5*spc/2+3*le,4*spc+4*le,4*spc+5*le,,h       !18N 
block,3*spc/2+le,3*spc/2+2*le,5*spc+5*le,5*spc+6*le,,h         !19N 
block,5*spc/2+2*le,5*spc/2+3*le,5*spc+5*le,5*spc+6*le,,h       !20N 
 
block,-(spc/2),-(spc/2+le),,le,,h                              !21P 
block,spc/2,spc/2+le,,le,,h                                    !22P 
block,-(spc/2),-(spc/2+le),spc+le,spc+2*le,,h                  !23P 
block,spc/2,spc/2+le,spc+le,spc+2*le,,h                        !24P 
 
block,-(5*spc/2+2*le),-(5*spc/2+3*le),2*spc+2*le,2*spc+3*le,,h !25P 
block,-(3*spc/2+le),-(3*spc/2+2*le),2*spc+2*le,2*spc+3*le,,h   !26P 
block,-(5*spc/2+2*le),-(5*spc/2+3*le),3*spc+3*le,3*spc+4*le,,h !27P 
block,-(3*spc/2+le),-(3*spc/2+2*le),3*spc+3*le,3*spc+4*le,,h   !28P 
 
block,3*spc/2+le,3*spc/2+2*le,2*spc+2*le,2*spc+3*le,,h         !29P 
block,5*spc/2+2*le,5*spc/2+3*le,2*spc+2*le,2*spc+3*le,,h       !30P 
block,3*spc/2+le,3*spc/2+2*le,3*spc+3*le,3*spc+4*le,,h         !31P 
block,5*spc/2+2*le,5*spc/2+3*le,3*spc+3*le,3*spc+4*le,,h       !32P 
 
block,-(spc/2),-(spc/2+le),4*spc+4*le,4*spc+5*le,,h            !33P 
block,spc/2,spc/2+le,4*spc+4*le,4*spc+5*le,,h                  !34P 
block,-(spc/2),-(spc/2+le),5*spc+5*le,5*spc+6*le,,h            !35P 
block,spc/2,spc/2+le,5*spc+5*le,5*spc+6*le,,h                  !36P 
 
 
 
!Block model contacts 
block,-(5*spc/2+4*le),-(3*spc/2+le),,spc+2*le,h,h+ch 
block,-(5*spc/2+3*le),(spc/2+le),,spc+2*le,,-ch 
block,-(spc/2+le),5*spc/2+3*le,,spc+2*le,h,h+ch 
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block,3*spc/2+le,5*spc/2+3*le,,3*spc+4*le,,-ch 
block,-(spc/2+le),5*spc/2+3*le,2*spc+2*le,3*spc+4*le,h,h+ch 
block,spc/2+le,-(5*spc/2+3*le),2*spc+2*le,3*spc+4*le,,-ch 
block,-(5*spc/2+3*le),-(3*spc/2+le),2*spc+2*le,5*spc+6*le,h,h+ch 
block,-(5*spc/2+3*le),spc/2+le,4*spc+4*le,5*spc+6*le,,-ch 
block,-(spc/2+le),5*spc/2+3*le,4*spc+4*le,5*spc+6*le,h,h+ch 
block,3*spc/2+le,5*spc/2+4*le,4*spc+4*le,5*spc+6*le,,-ch 
 
 
!Block model substrate 
block,-(5*spc/2+3*le),(5*spc/2+3*le),,5*spc+6*le,h+ch,h+ch+sub 
block,-(5*spc/2+3*le),(5*spc/2+3*le),,5*spc+6*le,-ch,-(ch+sub) 
 
!Block model sink and source mass 
block,-(5*spc/2+3*le),(5*spc/2+3*le),,5*spc+6*le,-(ch+sub),-
(ch+sub+sink) 
block,-(5*spc/2+3*le),(5*spc/2+3*le),,5*spc+6*le,h+ch+sub, 
h+ch+sub+sink 
vglue,all 
 
!Mesh Control 
!TE elements 
esize,le/6 
type,1 
mat,1 
vmesh,1 
vmesh,2 
vmesh,3 
vmesh,4 
vmesh,5 
vmesh,6 
vmesh,7 
vmesh,8 
!vmesh,9 
vmesh,10 
vmesh,11 
vmesh,12 
vmesh,13 
vmesh,14 
vmesh,15 
vmesh,16 
vmesh,17 
vmesh,18 
vmesh,19 
vmesh,20 
 
mat,2 
vmesh,21 
vmesh,22 
vmesh,23 
vmesh,24 
vmesh,25 
vmesh,26 
vmesh,27 
vmesh,28 
vmesh,29 
vmesh,30 
vmesh,31 
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vmesh,32 
vmesh,33 
vmesh,34 
vmesh,35 
vmesh,36 
 
!Contacts 
!esize,le/4 
type,2 
mat,3 
vmesh,53,54 
vmesh,57,64 
 
!Substrate 
!esize,le/3 
type,3 
mat,4 
vmesh,55,56 
 
!Sink/Source Mass 
vmesh,51,52 
 
!Boundary Contitions 
!Sink Mass 
nsel,s,loc,z,-(ch+sub+sink) 
d,all,temp,Ts 
 
!Source Mass 
nsel,s,loc,z,h+ch+sub+sink 
d,all,temp,Ta 
 
nsel,s,loc,z,-ch 
nr=ndnext(0) 
 
!Apply Electric 
!Terminal ground 
!A276 is lead surface 
nsel,s,loc,x,(5*spc/2+4*le) 
d,all,volt,0 
 
!Terminal apply current 
!A221 is lead surface 
nsel,s,loc,x,-(5*spc/2+4*le) 
cp,1,volt,all 
ni=ndnext(0) 
f,ni,amps,I 
 
nsel,all 
fini 
 
 
!SOLUTIONS 
/SOLU 
antype,static 
solve 
fini 
 
!POST PROCESSING 
/POST1 
plnsol,temp 
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!Top surface temperature profile 
PATH,path1,2,30,50 
PPATH,1,0,(le+spc)/2,0,le,0, 
PPATH,2,0,(le+spc)/2,(6*le+5*spc),le,0, 
Appendix A (Continued) 
 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
!Bottom surface temperature profile 
PATH,path2,2,30,50 
PPATH,1,0,(le+spc)/2,0,0,0, 
PPATH,2,0,(le+spc)/2,(6*le+5*spc),0,0, 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
!Full side temperature profile at edge 
PATH,path3,2,30,20 
PPATH,1,0,(le+spc)/2,le/2,-(ch+sub+sink),0, 
PPATH,2,0,(le+spc)/2,le/2,(h+ch+sub+sink),0, 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
!Center element temperature profile 
PATH,path4,2,30,20 
PPATH,1,0,-(le+spc)/2,7*le/2,0,0, 
PPATH,2,0,-(le+spc)/2,7*le/2,le,0, 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
!Edge element temperature profile 
PATH,path5,2,30,20 
PPATH,1,0,(le+spc)/2,le/2,0,0, 
PPATH,2,0,(le+spc)/2,le/2,le,0, 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
!========List Heat Rates at Ts Boundary========! 
nsel,s,loc,z,-(ch+sub+sink) 
nplot 
prrsol,HEAT 
 
fini 

 
A.2 Haptic Display 
 
/title, Thermoelectric Haptic Display 
/VUP,1,z 
/VIEW,1,1,1,1 
/TRIAD,OFF 
/NUMBER,1 
/PNUM,MAT,1 
/nopr 
 
/PREP7 
! Element size/number 
 
rs  =0.0100 
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es  =0.0125 
le  =0.0038 
h   =0.0048 
ch  =1.0e-4 
sub =1.0e-4 
epid=5.0e-4 
derm=1.5e-3 
musc=3.0e-3 
 
toffst,273 
 
Ts  =23 
Tb  =37 
 
Ii  =-0 
Iii =-0 
Iiii=-3 
Iiv =-0 
Iv  =-0 
 
! Material Properties 
K = 2 
! n-type 
mp,rsvx,1,1.0e-5   !Resistivity 
mp,kxx,1,K         !Th.Conductivity 
mp,sbkx,1,-170e-6  !Seebeck 
 
! p-type 
mp,rsvx,2,1.0e-5   !Resistivity 
mp,kxx,2,K         !Th.Conductivity 
mp,sbkx,2,170e-6   !Seebeck 
 
! Contacts 
mp,rsvx,3,1.7e-8   !Resistivity 
mp,kxx,3,400       !Th.Conductivity 
 
! Substrate 
mp,kxx,4,0.25 
 
!Epidermis 
mp,kxx,5,0.209 
 
!Dermis 
mp,kxx,6,0.322 
 
!muscle 
mp,kxx,7,0.419 
 
! Element types 
et,1,226,110 
et,2,227,110 
et,3,solid87 
 
 
!Block model elements 
!Row 1 n-type 
block,-(2*le+3*es/2),-(le+3*es/2),,le,,h 
block,es/2,le+es/2,,le,,h 
 
!Row 2 n-type 
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block,-(2*le+3*es/2),-(le+3*es/2),le+rs,2*le+rs,,h 
block,es/2,le+es/2,le+rs,2*le+rs,,h 
 
!Row 3 n-type 
block,-(2*le+3*es/2),-(le+3*es/2),2*le+2*rs,3*le+2*rs,,h 
block,es/2,le+es/2,2*le+2*rs,3*le+2*rs,,h 
 
!Row 4 n-type 
block,-(2*le+3*es/2),-(le+3*es/2),3*le+3*rs,4*le+3*rs,,h 
block,es/2,le+es/2,3*le+3*rs,4*le+3*rs,,h 
 
!Row 5 n-type 
block,-(2*le+3*es/2),-(le+3*es/2),4*le+4*rs,5*le+4*rs,,h 
block,es/2,le+es/2,4*le+4*rs,5*le+4*rs,,h 
 
!Row 1 p-type 
block,-(le+es/2),-(es/2),,le,,h 
block,le+3*es/2,2*le+3*es/2,,le,,h 
 
!Row 2 p-type 
block,-(le+es/2),-(es/2),le+rs,2*le+rs,,h 
block,le+3*es/2,2*le+3*es/2,le+rs,2*le+rs,,h 
 
!Row 3 p-type 
block,-(le+es/2),-(es/2),2*le+2*rs,3*le+2*rs,,h 
block,le+3*es/2,2*le+3*es/2,2*le+2*rs,3*le+2*rs,,h 
 
!Row 4 p-type 
block,-(le+es/2),-(es/2),3*le+3*rs,4*le+3*rs,,h 
block,le+3*es/2,2*le+3*es/2,3*le+3*rs,4*le+3*rs,,h 
 
!Row 5 p-type 
block,-(le+es/2),-(es/2),4*le+4*rs,5*le+4*rs,,h 
block,le+3*es/2,2*le+3*es/2,4*le+4*rs,5*le+4*rs,,h 
 
!Block Contacts 
block,-(3*le+3*es/2),-(le+3*es/2),,le,,-ch 
block,-(3*le+3*es/2),-(le+3*es/2),le+rs,2*le+rs,,-ch 
block,-(3*le+3*es/2),-(le+3*es/2),2*le+2*rs,3*le+2*rs,,-ch 
block,-(3*le+3*es/2),-(le+3*es/2),3*le+3*rs,4*le+3*rs,,-ch 
block,-(3*le+3*es/2),-(le+3*es/2),4*le+4*rs,5*le+4*rs,,-ch 
 
block,-(2*le+3*es/2),-(es/2),,le,h,h+ch 
block,-(2*le+3*es/2),-(es/2),le+rs,2*le+rs,h,h+ch 
block,-(2*le+3*es/2),-(es/2),2*le+2*rs,3*le+2*rs,h,(h+ch) 

Appendix A (continued) 

block,-(2*le+3*es/2),-(es/2),3*le+3*rs,4*le+3*rs,h,h+ch 
block,-(2*le+3*es/2),-(es/2),4*le+4*rs,5*le+4*rs,h,h+ch 
 
block,-(le+es/2),(le+es/2),,le,,-ch 
block,-(le+es/2),(le+es/2),le+rs,2*le+rs,,-ch 
block,-(le+es/2),(le+es/2),2*le+2*rs,3*le+2*rs,,-ch 
block,-(le+es/2),(le+es/2),3*le+3*rs,4*le+3*rs,,-ch 
block,-(le+es/2),(le+es/2),4*le+4*rs,5*le+4*rs,,-ch 
 
block,es/2,2*le+3*es/2,,le,h,h+ch 
block,es/2,2*le+3*es/2,le+rs,2*le+rs,h,h+ch 
block,es/2,2*le+3*es/2,2*le+2*rs,3*le+2*rs,h,h+ch 
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block,es/2,2*le+3*es/2,3*le+3*rs,4*le+3*rs,h,h+ch 
block,es/2,2*le+3*es/2,4*le+4*rs,5*le+4*rs,h,h+ch 
 
block,le+3*es/2,3*le+3*es/2,,le,,-ch 
block,le+3*es/2,3*le+3*es/2,le+rs,2*le+rs,,-ch 
block,le+3*es/2,3*le+3*es/2,2*le+2*rs,3*le+2*rs,,-ch 
block,le+3*es/2,3*le+3*es/2,3*le+3*rs,4*le+3*rs,,-ch 
block,le+3*es/2,3*le+3*es/2,4*le+4*rs,5*le+4*rs,,-ch 
 
!Substrate 
block,-(5*le/2+3*es/2),(5*le/2+3*es/2),-le,6*le+4*rs,h+ch,h+ch+sub 
 
block,-(3*le+3*es/2),-(le+3*es/2),,le,-ch,-(ch+sub) 
block,-(3*le+3*es/2),-(le+3*es/2),le+rs,2*le+rs,-ch,-(ch+sub) 
block,-(3*le+3*es/2),-(le+3*es/2),2*le+2*rs,3*le+2*rs,-ch,-(ch+sub) 
block,-(3*le+3*es/2),-(le+3*es/2),3*le+3*rs,4*le+3*rs,-ch,-(ch+sub) 
block,-(3*le+3*es/2),-(le+3*es/2),4*le+4*rs,5*le+4*rs,-ch,-(ch+sub) 
 
block,-(le+es/2),(le+es/2),,le,-ch,-(ch+sub) 
block,-(le+es/2),(le+es/2),le+rs,2*le+rs,-ch,-(ch+sub) 
block,-(le+es/2),(le+es/2),2*le+2*rs,3*le+2*rs,-ch,-(ch+sub) 
block,-(le+es/2),(le+es/2),3*le+3*rs,4*le+3*rs,-ch,-(ch+sub) 
block,-(le+es/2),(le+es/2),4*le+4*rs,5*le+4*rs,-ch,-(ch+sub) 
 
block,le+3*es/2,3*le+3*es/2,,le,-ch,-(ch+sub) 
block,le+3*es/2,3*le+3*es/2,le+rs,2*le+rs,-ch,-(ch+sub) 
block,le+3*es/2,3*le+3*es/2,2*le+2*rs,3*le+2*rs,-ch,-(ch+sub) 
block,le+3*es/2,3*le+3*es/2,3*le+3*rs,4*le+3*rs,-ch,-(ch+sub) 
block,le+3*es/2,3*le+3*es/2,4*le+4*rs,5*le+4*rs,-ch,-(ch+sub) 
 
!Tissue 
block,-(5*le/2+3*es/2),(5*le/2+3*es/2),-
le,6*le+4*rs,h+ch+sub,h+ch+sub+epid 
block,-(5*le/2+3*es/2),(5*le/2+3*es/2),-
le,6*le+4*rs,h+ch+sub+epid,h+ch+sub+epid+derm 
block,-(5*le/2+3*es/2),(5*le/2+3*es/2),-
le,6*le+4*rs,h+ch+sub+epid+derm,h+ch+sub+epid+derm+musc 
vglue,all 
 
!Mesh Control 
!Elements 
esize,le/3 
type,1 
mat,1 
vmesh,1,10 
mat,2 
vmesh,11,20 
 
!Contacts 
esize,le/4 
type,2 
mat,3 
vmesh,83,92 
vmesh,94,106,3 
vmesh,93,105,3 
vmesh,95,107,3 
 
!Substrate 
type,3 
mat,4 
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vmesh,108 
 
!Epidermis 
mat,5 
vmesh,80 
 
!Dermis 
mat,6 
vmesh,81 
 
!Muscle 
esize,le/3 
mat,7 
vmesh,82 
 
!=====Boundary Conditions======! 
!Source Temp 
nsel,s,loc,z,-ch 
d,all,temp,Ts 
 
!Body Temp 
nsel,s,loc,z,h+ch+sub+epid+derm+musc 
d,all,temp,Tb 
 
!====Terminal Ground====! 
!Row 1 
!nsel,s,loc,x,-(3*le+3*es/2) 
!nsel,r,loc,y,,le 
nsel,s,loc,x,(3*le+3*es/2) 
nsel,r,loc,y,,le 
d,all,volt,0 
 
!Row 2 
!nsel,s,loc,x,-(3*le+3*es/2) 
!nsel,r,loc,y,le+rs,2*le+rs 
nsel,s,loc,x,(3*le+3*es/2) 
nsel,r,loc,y,le+rs,2*le+rs 
d,all,volt,0 
 
!Row 3 
!nsel,s,loc,x,-(3*le+3*es/2) 
!nsel,r,loc,y,2*le+2*rs,3*le+2*rs 
nsel,s,loc,x,(3*le+3*es/2) 
nsel,r,loc,y,2*le+2*rs,3*le+2*rs 
d,all,volt,0 
 
!Row 4 
!nsel,s,loc,x,-(3*le+3*es/2) 
!nsel,r,loc,y,3*le+3*rs,4*le+3*rs 
nsel,s,loc,x,(3*le+3*es/2) 
nsel,r,loc,y,3*le+3*rs,4*le+3*rs 
d,all,volt,0 
 
!Row 5 
!nsel,s,loc,x,-(3*le+3*es/2) 
!nsel,r,loc,y,4*le+4*rs,5*le+4*rs 
nsel,s,loc,x,(3*le+3*es/2) 
nsel,r,loc,y,4*le+4*rs,5*le+4*rs 
d,all,volt,0 
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!====Terminal Current Input====! 
!Row 1 
nsel,s,loc,x,-(3*le+3*es/2) 
nsel,r,loc,y,,le 
!nsel,s,loc,x,(3*le+3*es/2) 
!nsel,r,loc,y,,le 
ni=ndnext(0) 
cp,1,volt,all 
f,ni,amps,Ii 
 
!Row 2 
nsel,s,loc,x,-(3*le+3*es/2) 
nsel,r,loc,y,le+rs,2*le+rs 
!nsel,s,loc,x,(3*le+3*es/2) 
!nsel,r,loc,y,le+rs,2*le+rs 
nii=ndnext(0) 
cp,2,volt,all 
f,nii,amps,Iii 
 
!Row 3 
nsel,s,loc,x,-(3*le+3*es/2) 
nsel,r,loc,y,2*le+2*rs,3*le+2*rs 
!nsel,s,loc,x,(3*le+3*es/2) 
!nsel,r,loc,y,2*le+2*rs,3*le+2*rs 
niii=ndnext(0) 
cp,3,volt,all 
f,niii,amps,Iiii 
 
!Row 4 
nsel,s,loc,x,-(3*le+3*es/2) 
nsel,r,loc,y,3*le+3*rs,4*le+3*rs 
!nsel,s,loc,x,(3*le+3*es/2) 
!nsel,r,loc,y,3*le+3*rs,4*le+3*rs 
niv=ndnext(0) 
cp,4,volt,all 
f,niv,amps,Iiv 
 
!Row 5 
nsel,s,loc,x,-(3*le+3*es/2) 
nsel,r,loc,y,4*le+4*rs,5*le+4*rs 
!nsel,s,loc,x,(3*le+3*es/2) 
!nsel,r,loc,y,4*le+4*rs,5*le+4*rs 
nv=ndnext(0) 
cp,5,volt,all 
f,nv,amps,Iv 
 
nsel,all 
fini 
!Solution 
/SOLU 
antype,static 
solve 
fini 
 
!Post Processing 
/POST1 
plnsol,temp 
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!Full side temperature profile at edge 
PATH,path1,2,30,20 
PPATH,1,0,3*le/2+3*es/2,(5*le/2+2*rs),-(ch),0, 
PPATH,2,0,3*le/2+3*es/2,(5*le/2+2*rs),(h+ch+sub+epid),0, 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
!Top surface profile 
PATH,path2,2,30,50 
PPATH,1,0,(le+es)/2,0,h+ch+sub+epid,0, 
PPATH,2,0,(le+es)/2,5*le+4*rs,h+ch+sub+epid,0, 
PDEF,,TEMP,,AVG 
PLPATH,TEMP 
 
 
fini 
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Appendix B – Matlab Analytical Solutions Code 

B.1 Plotting TC, TH, and Q versus Current Density 

%System Properties 
Ta = 325;      %T ambient (K) 
Ts = 300;      %T heat sink (K) 
Kh = 10^6;     %Exit conductance (W/m^2K) 
Kc = 10^6;     %Entrance conductance (W/m^2K) 
k = 2.0;       %Element conductivity (W/mK) 
S = 240e-6;    %Seeback coef (V/K) 
I = [0:.1:4];         %Input current (A) 
r = 1e-5;      %Element resistivity (Ohm-m) 
f = 0.9;       %Fill factor 
n = 0.01; 
R = 4;         %Redundency 
  
%Element dimensions 
Le = 2e-4;         %Element thickness (m) 
  
  
%RE 
%RE = 1e-8;  %Electrical contact resistance (ohm-m^2) 
RE = r*Le*(1+2*n); 
  
%K, Khe and Kce 
g = 1e-4;       %Ratio of TE conductivity and contact conuctivity 
(Thermal)(m) 
Kstar = k/g;    %Thermal contact conductance (W/m^2K) 
Khe = Kh*Kstar*f/(Kh+Kstar*f); %Exit thermal conductance (W/m^2K) 
Kce = Kc*Kstar*f/(Kc+Kstar*f); %Entry thermal conductance (W/m^2K) 
K = k/Le;        %Equivalent element conductance (W/m^2K) 
  
for i=1:1:length(I) 
    %Current 
    %Current Density (A/m^2) 
    J(i) = I(i)/R/Le^2; 
    %Simultaneous energy equations 
    A = [J(i)*S+K+Kce/f -K ; K J(i)*S-K-Khe/f]; 
    C = [Kce/f*Ts+0.5.*J(i).*J(i)*RE ; -Khe/f*Ta-0.5*J(i).*J(i).*RE]; 
    X = A\C; 
     
    Tc(i) = X(1);     %Cold J-n temperature (K) 
    Th(i) = X(2);     %Hot J-n temperature (K) 
    Qp(i) = J(i).*S*Tc(i) - J(i).*J(i).*RE/2 - K*(Th(i)-Tc(i));  %Heat 
flux (W/m^2) 
    Qp2(i) = f*Qp(i)/10000;   %Heat flux (Total area units) (W/cm^2K) 
    Qcrane(i) = Kce*(Ts-Tc(i))/10000; 
    P(i) = RE*J(i)^2+J(i)*S*(Th(i)-Tc(i)); 
end 
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Appendix B (continued) 
 
J = J' 
Tc = Tc' 
Th = Th' 
Qp2 = Qp2' 
Qcrane = Qcrane' 
P' 
  
%Qcrane = Kce*(Ts-Tc)/10000 
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